If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x4 + -18x2 + 20 = 0 Reorder the terms: 20 + -18x2 + x4 = 0 Solving 20 + -18x2 + x4 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '-20' to each side of the equation. 20 + -18x2 + -20 + x4 = 0 + -20 Reorder the terms: 20 + -20 + -18x2 + x4 = 0 + -20 Combine like terms: 20 + -20 = 0 0 + -18x2 + x4 = 0 + -20 -18x2 + x4 = 0 + -20 Combine like terms: 0 + -20 = -20 -18x2 + x4 = -20 The x term is -18x2. Take half its coefficient (-9). Square it (81) and add it to both sides. Add '81' to each side of the equation. -18x2 + 81 + x4 = -20 + 81 Reorder the terms: 81 + -18x2 + x4 = -20 + 81 Combine like terms: -20 + 81 = 61 81 + -18x2 + x4 = 61 Factor a perfect square on the left side: (x2 + -9)(x2 + -9) = 61 Calculate the square root of the right side: 7.810249676 Break this problem into two subproblems by setting (x2 + -9) equal to 7.810249676 and -7.810249676.Subproblem 1
x2 + -9 = 7.810249676 Simplifying x2 + -9 = 7.810249676 Reorder the terms: -9 + x2 = 7.810249676 Solving -9 + x2 = 7.810249676 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '9' to each side of the equation. -9 + 9 + x2 = 7.810249676 + 9 Combine like terms: -9 + 9 = 0 0 + x2 = 7.810249676 + 9 x2 = 7.810249676 + 9 Combine like terms: 7.810249676 + 9 = 16.810249676 x2 = 16.810249676 Simplifying x2 = 16.810249676 Take the square root of each side: x = {-4.100030448, 4.100030448}Subproblem 2
x2 + -9 = -7.810249676 Simplifying x2 + -9 = -7.810249676 Reorder the terms: -9 + x2 = -7.810249676 Solving -9 + x2 = -7.810249676 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '9' to each side of the equation. -9 + 9 + x2 = -7.810249676 + 9 Combine like terms: -9 + 9 = 0 0 + x2 = -7.810249676 + 9 x2 = -7.810249676 + 9 Combine like terms: -7.810249676 + 9 = 1.189750324 x2 = 1.189750324 Simplifying x2 = 1.189750324 Take the square root of each side: x = {-1.090756767, 1.090756767}Solution
The solution to the problem is based on the solutions from the subproblems. x = {-4.100030448, 4.100030448, -1.090756767, 1.090756767}
| 2.5x+15y=650 | | x^2-y^2=1155 | | 4x^2-9y^2=2100 | | 4x^2-9y^2=132 | | (m+3n)(2m-n)= | | 7x+12y=47.5 | | 67-3/4x=-34 | | 237960+26d=2067959+125d | | y*.0001=.03 | | 3sin^2x=cos^2x | | 10r^2-450r+45=0 | | 2+.12x=21.32 | | 0.2857x+12=-22 | | 5x-1.8y=0.8 | | 14.99+.87x=199.43 | | 2/7x+12=-22 | | 7X+9-4X=10-11X-12 | | 30+.23x=20.34 | | 4-5(-4+3)=0 | | 16z^2+16z+3= | | 90-7.78x=51.10 | | 1/8(5x-5)=(x+5)/16 | | x+2.25X=10 | | 6[7-(-2x-8)]=96x+426 | | 1996+43x=7385-63x | | -x=1/4 | | 4.66666666667+2(4.66666667)= | | 3w^2-6w-360=0 | | -3y=3/8 | | 16.99+0.8x=164.19 | | 8p+2q=64 | | 10x+36-38x-4=0 |